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Findings

At the preprocessing step, we found error correction has a strong influence on de novo
assembly but not on mapping results. After trimming, a greater percentage of reads
were able to be used in downstream analysis by selecting gentle quality trimming
performed with Skewer instead of strict quality trimming with Trimmomatic. This
availability of reads correlated with size, quality and completeness of de novo
assemblies, and number of mapped reads. When selecting a reference genome from a
related species to map reads, outcome was significantly improved when using
mapping software tolerant of greater sequence divergence, such as Stampy or
GSNAP.

Conclusions

The selection of bioinformatic software tools for RNA-Seq data analysis can maximize
quality parameters on de novo assemblies and availability of reads in downstream
analysis.
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Abstract 25 

Background: The usual analysis of RNA-Seq reads is based on an existing reference 26 

genome and annotated gene models. However, when a reference for the sequenced 27 

species is not available, alternatives include using a reference genome from a related 28 

species or reconstructing transcript sequences with de novo assembly. In addition, 29 

researchers are faced with many options for RNA-Seq data processing and limited 30 

information on how their decisions will impact the final outcome. Using both a diploid 31 

and polyploid species with a distant reference genome, we have tested the influence of 32 

different tools at various steps of a typical RNA-Seq analysis workflow on the recovery 33 

of useful processed data available for downstream analysis.  34 

 35 

Findings: At the preprocessing step, we found error correction has a strong influence on 36 

de novo assembly but not on mapping results. After trimming, a greater percentage of 37 

reads were able to be used in downstream analysis by selecting gentle quality trimming 38 

performed with Skewer instead of strict quality trimming with Trimmomatic. This 39 

availability of reads correlated with size, quality and completeness of de novo 40 

assemblies, and number of mapped reads. When selecting a reference genome from a 41 

related species to map reads, outcome was significantly improved when using mapping 42 

software tolerant of greater sequence divergence, such as Stampy or GSNAP.  43 

 44 

Conclusions: The selection of bioinformatic software tools for RNA-Seq data analysis 45 

can maximize quality parameters on de novo assemblies and availability of reads in 46 

downstream analysis.  47 

 48 

Keywords: RNA-Seq, pipeline, polyploid, correction, trimming, assembly, clustering, 49 

reference genome, mapping 50 
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Background 52 

Bioinformatics is a field under constant expansion with regular advances in the 53 

development of software and algorithms. This requires researchers to continuously 54 

evaluate available software tools and approaches to maximize accuracy of experimental 55 

outcomes [1]. However, the majority of the relevant studies comparing bioinformatic 56 

tools for RNA-Seq data focus on straightforward scenarios with diploid eukaryotes with 57 

an available reference genome [2-5]. The implications of data analysis decisions are less 58 

clearly understood in situations where, for example, the species of interest is a polyploid 59 

or the species of interest does not have a reference genome but a reference genome is 60 

available from a sister clade. This study aims to explore RNA-Seq data analysis from 61 

this scenario, where the main steps are read trimming, either mapping to a related 62 

species reference genome (from here on referred to as a “distant reference”) or to a de 63 

novo transcriptome assembly, and read quantification by gene or transcript (Figure 1). 64 

Moreover, this study compares decisions along the RNA-Seq analysis steps of a 65 

workflow, examining all permutations of those decisions from the beginning to the end 66 

of the pipeline.  67 

 68 

Figure 1. Schematic view of the RNA-Seq pipeline. Uc stands for uncorrected, trimm 69 

for Trimmomatic, Cor for corrected. 70 

 71 

From the many next generation sequencing platforms that generate RNA-Seq data, 72 

Illumina has had the greatest success, yielding high quality reads at a reasonable price 73 

and read length increasing with new generations of instruments [6]. From the raw reads, 74 

numerous informatic analysis decisions must be made to derive meaningful biological 75 

data, starting with any preprocessing of the reads. Despite the usually high accuracy of 76 

Illumina reads (0.1% error rate), error correction is a method with potential to improve 77 

the quality of read alignment and de novo assembly [7]. Before sequencing, adapters are 78 

incorporated to both ends of each sequence. Trimming of bases originating from these 79 

adapters is required, but the merit of aggressive versus gentle trimming of lower quality 80 

bases, which modifies the final amount of data, is still being explored [8].  81 

 82 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



4 

 

 

After preprocessing, if a reference genome is available, RNA-Seq reads may be used to 83 

call variants or determine differentially expressed genes; on the contrary, de novo 84 

assembly may be used to reconstruct transcripts to do such analyses [9]. De novo 85 

transcriptome assembly in plants is complex due to the sequence similarity of 86 

transcripts that are isoforms, paralogs, orthologs and, in the case of polyploids, 87 

homeologs. Moreover, in transcriptomes of plants under environmental stress, 88 

alternative splicing is even more prevalent [10]. This complexity leads to imperfect 89 

assemblies, with a portion of assembled transcripts affected by artifacts, which include 90 

hybrid assembly of gene families, transcript fusion (chimerism), insertions in contigs, 91 

and structural abnormalities such as incompleteness, fragmentation, and local 92 

misassembly of contigs [11]. From the many assemblers developed to use with short 93 

reads, Trinity [12] is commonly selected and has good performance [4, 13]. A usual step 94 

to refine de novo assemblies is to reduce transcript redundancy. One popular tool is CD-95 

HIT [14], which removes shorter redundant sequences based on sequence similarity. A 96 

more recently released clustering tool, RapClust [15], generates clusters based on the 97 

relationships exposed by multi-mapping sequencing fragments and is considerably 98 

faster than previous approaches. Several methods are usually compared to assess the 99 

overall quality, accuracy, contiguity and completeness of a de novo assembled 100 

transcriptome, including basic metrics for assemblies, contig-level metrics, and 101 

comparison to protein datasets from related species [9, 11, 16, 17].  102 

 103 

Read mapping is a crucial step to estimate gene expression for further analysis, but is 104 

made difficult by sequencing errors and is dependent on characteristics of the reference 105 

(quality of gene annotation, relatedness to sequenced individuals, size, repetitive 106 

regions, ploidy, etc.) [18]. Mapping transcript reads to a reference genome has the 107 

additional challenge of crossing splice junctions, some of which may not be accurately 108 

annotated [3]. Multiple metrics can be used to determine performance of read aligners. 109 

Precision and recall are the usual metrics with simulated data, while evaluations without 110 

a priori known outcomes utilize mapping rate, base mismatch rate, detected transcripts 111 

or correlation of gene expression estimates to quantify performance [2, 19]. Most 112 

common short read aligners are based on hash tables, which are more accurate but slow, 113 

or a compressed FM-index, which is faster but less flexible with errors [2, 9]. When 114 

using a distant genome, sequence divergence between reads and the reference genome 115 
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may compromise results; nucleotide mismatches are more likely to decrease the number 116 

of mapped reads, while indels are usually better tolerated with gapped alignments [2]. 117 

One benefit from the utilization of a distant genome is a direct comparison of gene 118 

expression results from multiple related species [20]. On the other hand, utilization of 119 

de novo assemblies avoids the mapping issues to a distant genome and also captures 120 

divergent and novel genes useful for species-specific discovery of new functions. 121 

Selecting between a de novo transcriptome or a reference genome has been shown to 122 

produce comparable gene expression profiles at over 87% correlation in other systems 123 

but has not been examined in plants [5, 19]. 124 

 125 

Most prior papers examining the choice of informatics software for RNA-Seq data 126 

analysis worked with straightforward data sets, either performing a single type of 127 

analysis on the data or working with data from diploid organisms with well-developed 128 

reference genomes. However, much less research has been done into genomics of 129 

complex species and, especially in the case of plants, polyploids. Many polyploid crops 130 

now have available reference genomes, like strawberry [21], cotton [22], wheat [23], or 131 

sweet potato [24], while others continue to rely on genomic resources from diploid 132 

relatives, such as potato [25], kiwifruit [26], peanut [27], or blueberry [28]. Here, we 133 

have selected blueberry datasets as an example. A number of different species of 134 

blueberries are used in agricultural production and breeding, with autotetraploid 135 

Vaccinium corymbosum (highbush blueberry) as the most economically important [29]. 136 

In this study we use RNA-Seq data from an autotetraploid V. corymbosum and a diploid 137 

species, V. arboreum. The available reference genome is from a diploid V. corymbosum 138 

[28, 30].  139 

Data description 140 

The sequencing data used in this work is 270 million Illumina paired-end reads (2*101 141 

bp long) for diploid V. arboreum (VA) and 582 million reads for tetraploid V. 142 

corymbosum (VC), originating from 8 plants each [20] and sequenced on duplicate 143 

lanes. Libraries were prepared from RNA collected from roots of plants of similar age 144 

after eight weeks of growth in hydroponic systems under either stressful (pH 6.5) or 145 

control (pH 4.5) conditions. All sequence data is publicly available at NCBI (see details 146 
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below). At the first step of data curation, our tested methods are error correction of 147 

RNA-Seq data with Rcorrector and trimming of low quality bases by one of two 148 

methods, Trimmomatic [31] or Skewer [32]. Error correction of raw reads modified an 149 

average of 0.7% bases per library, a proportion larger than the expected 0.1% 150 

sequencing error rate in Illumina reads and suggests a possible masking of variability in 151 

the data. Next, both original and corrected reads were trimmed using either Skewer or 152 

Trimmomatic at default settings. Gentle quality trimming with Skewer retained on 153 

average 99.6% reads at mean length 99.8 bp (Table S1). In contrast, quality trimming 154 

with Trimmomatic, which has significantly more aggressive default trimming 155 

parameters, retained 77.2% of reads at mean length 93.8 bp. Error correction did not 156 

have a significant effect on trimming results. From the combination of 157 

corrected/uncorrected reads and trimming software used, four read sets (reads processed 158 

by Rcorrector and Trimmomatic, Rcorrector and Skewer, Trimmomatic only, and 159 

Skewer only) for each species were used in downstream analyses. 160 

Analysis 161 

Construction of de novo assemblies 162 

A series of de novo assemblies were carried out with the Trinity software. For each 163 

species, assemblies of a single control library, a single treatment library or a 164 

combination of both libraries were performed, using each of the four preprocessing 165 

techniques as input (Skewer corrected, Skewer uncorrected, Trimmomatic corrected, 166 

Trimmomatic uncorrected), to yield a total of 24 Trinity runs (Figure S1). For the 167 

assembly of two individual libraries, the results were combined post-assembly. The 168 

possible benefit of this approach is the reconstruction of specific transcripts from 169 

control and treated samples without mixture of alternative splice variants, at the expense 170 

of including a smaller data input size that may induce fragmentation of assemblies as 171 

well as a requirement to merge the separate assemblies afterward. This approach is 172 

contrasted to the second method, which combines multiple samples in a single assembly 173 

run; this approach aims at reconstructing longer and more complete transcripts despite 174 

mixing fragments from splice variants.  175 

 176 

Table 1. De novo assembly basic metrics.  177 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



7 

 

 

assembly trimming 
error 

correction 

# input 

fragments 

# output 

seqs 

# output 

seqs 

<500bp 

# output 

seqs >1kb 

# output 

seqs 

>10kb 

N50 

VA_4s skewer - 36 148 028 329 614 255 716 29 022 27 550 

VA_4s skewer + 36 148 810 330 075 256 072 29 054 26 552 

VA_4s trimmomatic - 27 202 836 290 112 222 424 27 029 22 577 

VA_4s trimmomatic + 27 204 308 291 843 223 430 27 275 26 579 

VA_1sC skewer - 10 587 674 142 129 108 121 12 110 4 542 

VA_1sC skewer + 10 587 893 143 209 107 881 12 828 4 565 

VA_1sC trimmomatic - 8 236 566 127 214 96 277 10 726 3 544 

VA_1sC trimmomatic + 8 236 881 128 668 96 432 11 516 4 564 

VA_1sT skewer - 7 568 547 95 736 76 461 5 364 2 441 

VA_1sT skewer + 7 568 703 96 587 76 517 5 712 4 453 

VA_1sT trimmomatic - 5 271 314 82 949 66 043 4 718 1 444 

VA_1sT trimmomatic + 5 271 955 84 136 66 482 5 018 2 454 

VC_4s skewer - 80 878 048 632 185 492 743 49 578 34 515 

VC_4s skewer + 80 879 542 636 227 494 632 50 564 32 521 

VC_4s trimmomatic - 62 799 424 565 025 434 903 47 798 32 540 

VC_4s trimmomatic + 62 801 807 569 258 436 967 48 755 32 547 

VC_1sC skewer - 18 472 410 227 024 176 969 17 850 6 507 

VC_1sC skewer + 18 472 731 230 322 177 699 19 286 14 529 

VC_1sC trimmomatic - 14 504 065 203 961 158 201 16 373 16 517 

VC_1sC trimmomatic + 14 504 527 207 763 159 491 17 698 10 536 

VC_1sT skewer - 18 330 711 227 074 183 773 13 431 13 435 

VC_1sT skewer + 18 331 169 230 852 185 160 14 487 10 449 

VC_1sT trimmomatic - 14 570 654 202 713 163 406 12 184 6 440 

VC_1sT trimmomatic + 14 571 002 206 743 165 075 13 078 11 454 

 178 

Assemblies are formed by the combination of trimming software, error correction with Rcorrector, 179 

blueberry species (VA, Vaccinium arboreum; VC, V. corymbosum), and number of samples on the 180 

assembly (1s, one sample; C, control; T, treatment; 4s, four samples). 181 

 182 

After each assembly run, the number of output sequences is highly correlated with the 183 

number of input fragments. The N50 statistic responded to the number of input samples 184 

used and, to less extent, trimming and error correction (Table 1). As the selection of 185 

trimming software directly impacts the number of fragments available to assemble, the 186 
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assemblies made after Trimmomatic have a lower number of transcripts and better N50 187 

values. N50 with Trimmomatic was increased in comparison to Skewer by 5% on 4-188 

sample assemblies and 0-1% on those from 1 sample. In agreement with previous 189 

reports showing improvement of assembly quality after using an error correction tool [7, 190 

33], assemblies from corrected reads increased the number of transcripts by 1% and 191 

increased N50 by 2.5%. For all assemblies, the default minimum transcript length was 192 

200 bp. 75-80% of assembled transcripts were shorter than 500 bp, representing 193 

putative assembly artifacts or transcripts encoding protein fragments or short proteins 194 

(10-200 amino acids [34]). This over-abundance of short assembled transcripts is 195 

reflected by the low N50 values, also around 500 bp. Increasing the number of input 196 

fragments also has a positive effect on the assembly of long transcripts, following 197 

similar trends with trimming and correction as the total number of transcripts.  198 

Clustering of de novo assemblies 199 

Assemblies may contain sequences from highly similar gene isoforms, transcript 200 

isoforms of a same gene and, in the case of polyploids, homeologous genes, that may be 201 

considered redundant and lead to reads mapping to multiple locations. In addition, 202 

considering that plants contain 37000 proteins on average [35], the number of 203 

transcripts from all of the Vaccinium assemblies (Table 1) largely surpasses this 204 

quantity. Tools aimed at the reduction of such redundancy are widely used to select 205 

non-redundant representative sequences [13, 36, 37]. We have compared the clustering 206 

capabilities from two tools with very different approaches. CD-HIT was used to select 207 

long representative transcripts and remove smaller redundant sequences at 95% 208 

similarity cutoff. RapClust groups transcripts based on the information of multi-mapped 209 

reads, and removes transcripts with low read support. CD-HIT returns a classification of 210 

transcripts into clusters and a set of representative transcripts with reduced redundancy, 211 

while RapClust returns clustering information suited to be used for downstream 212 

differential expression analysis but does not report a reduced transcript set. For the sake 213 

of comparing results, the longest transcript from each cluster generated by RapClust 214 

was selected to form corresponding reduced assemblies. Prior to clustering, single-215 

sample assemblies were combined into a merged assembly, with expected introduction 216 

of high redundancy. Then, transcripts from the 16 assemblies (8 per species) (Figure S1) 217 

were subjected to classification into clusters with either of these tools. 218 
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 219 

In all cases RapClust produced fewer clusters than CD-HIT (Figure 2A, Table S2); on 220 

average, the number of clusters after CD-HIT and RapClust were 22% and 51% smaller 221 

than the initial number of transcripts, respectively. In addition, RapClust filtered out 9% 222 

and 24% of sequences on 2s and 4s assemblies, respectively, due to low read support 223 

(Table S2). The degree of clustering varies by type of assembly and species. There was 224 

less clustering in 4s than 2s assemblies, as shown by the 12% and 2.5% larger 225 

proportion of representative sequences in 4s retained after CD-HIT or RapClust, 226 

respectively. On average VA had slightly less clustering, with 3.2% more sequences 227 

retained as clusters than VC. This correlates with the putative higher redundancy in 2s 228 

assemblies, and by the presence of homeolog genes due to polyploidy in VC. The 229 

higher degree of clustering of RapClust yielded a larger mean number of transcripts per 230 

cluster and the largest clusters are one order of magnitude higher in number of member 231 

transcripts than those of CD-HIT (Table S2). However, both methods left a large 232 

proportion of transcripts unclustered; 74-87% and 58-77% of clusters for CD-HIT and 233 

RapClust, respectively, had a single member transcript (Table S2). Abundance of small 234 

sequences (<500 bp) remained high after clustering, on average 78%, constituting the 235 

majority of these single-member clusters. Despite very short transcripts (e.g. < 300 bp) 236 

are usually considered less informative, selection of a larger transcript length cutoff is 237 

not in the scope of the present work.   238 

 239 

Detonate scores are used to compare a set of transcriptomes formed from the same set 240 

of reads, where values closer to zero indicate better assemblies. Detonate was used to 241 

evaluate the original assembled transcripts, the cluster representative sequences yielded 242 

by CD-HIT, and the longest transcript from each RapClust cluster. For initial 243 

assemblies, detonate scores are inversely correlated with the number of transcripts 244 

(Figure 2B), possibly reflecting the compactness component in detonate evaluation. All 245 

detonate scores were lower after clustering compared to initial assemblies, possibly 246 

reflecting a reduced support from RNA-Seq reads. Scores decreased by 87.2%, 102.5%, 247 

1.8% and 15.1% in 2s CD-HIT, 2s RapClust, 4s CD-HIT and 4s RapClust, respectively. 248 

These rates were not influenced by species or read processing. Thus, despite reducing 249 

the initial score, clustering of assemblies has better evaluation when using CD-HIT 250 
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instead of RapClust, and when combining multiple samples in the assembly instead of 251 

separately assemble and merge. 252 

 253 

Figure 2. Basic assembly metrics of initial Trinity assemblies, redundancy-reduced 254 

clusters and predicted cds. (A) number of transcripts, (B) Detonate scores and (C) 255 

N50 values. Lines are colored by assembly type: VA for Vaccinium arboreum, VC for 256 

Vaccinium corymbosum, 2s for 2 sample assembly strategy, 4s for 4 sample assembly 257 

strategy. Symbols indicate how reads were trimmed (trimm for Trimmomatic) and 258 

whether they were corrected (Uc for uncorrected, cor for corrected). 259 

 260 

Annotation of de novo and clustered assemblies 261 

In addition to assembly metrics, functional annotation of transcripts was done to assess 262 

putative biological information contained in transcriptomes. The first step for 263 

transcriptome annotation consisted of extracting coding sequences (cds) from transcripts 264 

with Transdecoder. This software finds all open reading frames (ORFs) and selects the 265 

most likely putative cds using homology search results from blast. 52-58% of transcripts 266 

contained a predicted cds for all assemblies. Compared to the length of original 267 

transcripts, the average length of cds decreased by 13% and 20% on 2s and 4s 268 

assemblies, respectively. The shortest cds sequences of 147 bp corresponded to the 269 

lower limit of 50 amino acids, after Transdecoder refining the start codon nucleotides. 270 

In contrast, the N50 value of cds was increased on average 24% compared to clusters, 271 

except in VC 4s assemblies that decreased by 5% (Figure 2C), possibly reflecting the 272 

reduction in total number of bases after discarding non-coding regions. N50 was 273 

consistently larger after RapClust than CD-HIT. These variations were dependent on 274 

type of assembly (species and samples), rather than read processing (correction and 275 

trimming).  276 

 277 

To further explore the effect of clustering, we utilized the published reference genome 278 

from the diploid Vaccinium corymbosum [28]. We presented two scenarios, one with a 279 

distant diploid species and other with the same species but different ploidy level. To 280 

explore the portion of transcripts with sequence homology that each species shares with 281 

the reference genome, we mapped the clustered transcriptomes to it. Transcripts were 282 
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classified as uniquely mapping, mapping to multiple loci, translocated (parts of the 283 

transcripts were mapped to different locations on the genome) or not mapping. These 284 

results were combined with Transdecoder cds prediction and blast homology results. 285 

Overall, transcripts generated for the diploid VA mapped to the reference genome at a 286 

larger proportion than the tetraploid VC, and the 2-sample merged assemblies (2s) 287 

mapped at a higher rate than the 4-sample ones (4s) (Figure 3). Specifically, average 288 

mapping rate of transcripts was 66% and 57% in VA 2s and 4s, and 57 and 43% in VC 289 

2s and 4s. Thus, the use of multiple samples leads to a higher proportion of transcripts 290 

not resembling the genome, representing species-specific transcripts and possibly 291 

artifacts. While VA has higher mapping rates than VC, discrimination between a true 292 

higher similarity or an effect due to the read input cannot be made. The proportion of 293 

multiple mapping and translocated transcripts had little variation across transcriptomes 294 

in both species, being 5-7% and 4% respectively. Multi-mapping rate reflects highly 295 

similar regions of the genome, and translocations could indicate either true genome 296 

rearrangements or assembly artifacts such as transcript fusions (chimeras). Clustering 297 

with CD-HIT or RapClust (using a single representative sequence for each cluster), 298 

despite affecting the total number of transcripts, maintained similar proportion of 299 

transcripts in each mapping category; on average, RapClust increased 2.2% unique and 300 

decreased by 0.5% multiple and translocated mapping transcripts compared to CD-HIT. 301 

Trimming also influenced mapping; assemblies from reads trimmed with Trimmomatic 302 

showed an average 2% higher unique mapping rate than their counterparts with Skewer, 303 

suggesting better accuracy with stricter trimming. No effect was observed from error 304 

correction. 305 

 306 

Prediction of a coding sequence and the extent to which they may be coding for proteins 307 

was used as an indicator of biological information contained in transcripts. Transcripts 308 

within each category (unique, multiple, translocated and not mapping) had different 309 

likelihoods of having a predicted coding sequence and additionally of cds showing 310 

homology to known proteins. On average, 49.2%, 51.8%, 54.8% and 64.5% of the 311 

transcripts in the categories unique, multiple, translocated and not mapping, contained a 312 

predicted coding sequence (Figure 3). In addition, 54.0%, 42.4%, 55.2% and 20.1% of 313 

the cds on those categories, respectively, had a blast hit. Thus, a relatively large 314 

proportion of cds do not map to the genome, particularly in VC with 4 samples (72%). 315 
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These transcripts also show low similarity to known proteins, leaving unclear whether 316 

they belong to true novel transcripts or they are assembly artifacts. For transcripts that 317 

mapped to the genome, VA exhibited greater proportion of annotation than VC. 318 

Nonetheless, comparing absolute number of transcripts, VC has a larger set of mapping 319 

transcripts with cds but also an even larger number of transcripts not matching the 320 

reference than VA. Influence from the other analysis options on annotation distribution 321 

were less drastic. Clustering with RapClust had a positive effect on the proportion of 322 

cds and blast results of unique and translocated transcripts, especially in 2s assemblies, 323 

in the range of 0.5-5.5%. Changes due to read trimming or correction were lower than 324 

2%.  325 

 326 

Figure 3. Mapping of de novo assembly transcriptomes to Vaccinium corymbosum 327 

reference genome and annotation of transcripts. Transcripts mapped either uniquely 328 

to the genome (uniq), to multiple locations (mult), with translocations (transloc) or did 329 

not map (out). Annotation from prediction of coding sequences (cds) using homology 330 

results from blast is divided as “No Functional Annotation” (map), “CDS Only” (cds) 331 

and “CDS with Blast Hit” (blast). Transcriptomes derive from the combination of use 332 

(C) or not (U) of error correction, Trimmomatic (tr) or Skewer (sk) trimming tools, CD-333 

HIT or RapClust clustering software, two (2s) or four (4s) samples, and blueberry 334 

species (VA and VC). 335 

Quality assessment of assemblies and derivatives 336 

To compare results throughout the sequential stages of transcriptome processing, the 337 

BUSCO tool was used to assess completeness of assemblies in relation to a select plant 338 

protein database that contains 1440 near-universal conserved orthologs. The results 339 

report for each BUSCO whether it is present in the assembly complete and single-copy, 340 

complete and duplicated, fragmented, or missing. Examining the impact on BUSCO 341 

results by read processing, assemblies from soft trimmed reads with Skewer presented 342 

higher completeness (Figure 4A). Interestingly, error correction improved the formation 343 

of complete BUSCOs on 2s assemblies, while it did not have a significant effect on 4s 344 

assemblies. However, the major options influencing completeness were blueberry 345 

species and number of samples used. Thus, assembly of complete genes was improved 346 

in VC compared to VA, and in assemblies of four rather than two samples (Figure 4A). 347 
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Overall, completeness of CD-HIT clusters was very similar to those of de novo 348 

assemblies, while RapClust clusters contained fewer total BUSCOs. Selection of cds 349 

further decreased completeness, either decreasing complete genes or also increasing 350 

fragmented genes, mostly in 4s assemblies. The distribution of complete vs fragmented 351 

BUSCOs follows a trend where a reduction in total BUSCOs is followed by an increase 352 

in fragmented BUSCOs (Figure 4A). Following this trend, the rate of fragmented 353 

BUSCOs was not significantly modified by read processing nor by clustering with CD-354 

HIT, while RapClust increased it except in VA 2s, where fragmented BUSCOs were 355 

reduced.  356 

 357 

While some gene families may have undergone expansion or contraction since the 358 

Vaccinium common ancestor, we expect the majority of transcripts to provide one-to-359 

one orthologs for the VA gene set and two-to-one orthologs for the tetraploid VC gene 360 

set. Coincident with their ploidy, duplicated vs single-copy ratio in unclustered VA de 361 

novo assemblies was half that of VC (0.50 in 2s and 0.58 in 4s). Also, the duplication 362 

ratio in 2s vs 4s unclustered assemblies was 1.25 in VA and 1.45 in VC, supporting 363 

higher redundancy in 2s assemblies. These ratios are independent from the size of 364 

transcriptomes. Clustering was efficient to remove redundant genes, as shown by the 365 

reduction of duplicates. RapClust drastically removed most duplicated BUSCOs, 366 

leaving 20-30 duplicated BUSCOs for all assemblies, while CD-HIT performed a 367 

reduction proportional to the assembly length of 62% on 2s and 44% on 4s assemblies. 368 

While the clustering did remove many duplicated BUSCOs, most became single copy 369 

BUSCOs and were not lost from the assembly altogether. Only in the 4s assemblies, 370 

comparing the original assembly to RapClust cluster transcripts, there was a significant 371 

decrease in the number of complete BUSCOs (Figure 4B).  372 

 373 

 374 

Figure 4. Evaluation of assembly and clustering methods. (A, B) Completeness 375 

assessment with BUSCO tool subdivided into complete versus fragmented BUSCOs 376 

(A) or single-copy versus duplicated complete BUSCOs (B). Dotted lines represent 377 

isolines of BUSCO numbers from a total search space of 1440 orthologs. Dot colors 378 

indicate assembly stage and areas assembly type. Stages of the assembly are divided 379 

into initial de novo assembly (asmb), clustered with either CD-HIT or RapClust, or 380 
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predicted coding regions (cds). Assembly type indicates the combination of blueberry 381 

species (V. arboreum, VA; V. corymbosum, VC) and the use of two independent 382 

assemblies merged (2s) or assembly of four samples (4s). Shapes represent read pre-383 

processing options, with (cor) or without (Uc) error correction, and the use of Skewer or 384 

Trimmomatic (trimm) trimming tools. (C) Distribution of mean Jaccard scores on CD-385 

HIT and RapClust clusters of transcriptome assemblies. Scores range between ~0 (low 386 

clustering of co-annotated transcripts) and 1 (perfect clustering of co-annotated 387 

transcripts). (D) Distribution of genome versus assembly base coverage on multiple de 388 

novo assemblies mapped to Vaccinium corymbosum reference genome after redundancy 389 

reduction with either CD-HIT (larger points) or RapClust (smaller points). Shapes 390 

indicate read processing, with (cor) or without (Uc) error correction, and trimmed with 391 

either Trimmomatic (trimm) or Skewer.  392 

 393 

BUSCO results were not only used to assess completeness, but also to measure the 394 

success of the clustering methods using an adaptation of the Jaccard similarity method. 395 

Taking advantage of BUSCO consensus sequences, transcript co-annotation was 396 

calculated as the number of transcripts with the same BUSCO annotation within a 397 

cluster (set intersection) divided by the total number of transcripts with that BUSCO 398 

annotation or in the cluster (set union). The result is a value in the range 0 to 1, from 399 

low to perfect shared annotation of transcripts within a cluster. This method not only 400 

indicates the degree of co-annotation depicted by each clustering algorithm but also 401 

compares the putative biological relevance of clusters. On this respect, RapClust 402 

consistently outperforms CD-HIT on clustering of co-annotated BUSCO genes (Figure 403 

4C). Clusters from the diploid VA were markedly better co-annotated from those of VC. 404 

Generally, RapClust performance was enhanced on larger transcriptomes, while CD-405 

HIT performed better on smaller ones. In relation to read processing, Trimmomatic and 406 

uncorrected reads generally achieved higher scores. 407 

 408 

To explore the percent of the blueberry genome captured by the de novo assemblies, 409 

base coverage was calculated for transcripts that mapped uniquely to the diploid 410 

reference genome (Figure 4D). Assembly base coverage is the proportion of bases of 411 

each transcript assembly that were mapped to the reference genome, and genome base 412 

coverage is the proportion of the reference genome covered by the transcripts. In 413 
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general, both metrics showed inverse correlation. Thus, genome coverage was enhanced 414 

with the use of Skewer, four samples and CD-HIT, while decreasing assembly 415 

coverage. Thus, genome coverage is concordantly improved by those options that also 416 

increase transcriptome size, where a larger number of transcripts is able to better 417 

represent genomic sequences. This is true for both blueberry species, with the 418 

distinction that VC exhibits both better genome and assembly coverage than VA, 419 

consistent with phylogenetic proximity to the reference genome species. On the other 420 

hand, trimming with Trimmomatic, two-sample assemblies and clustering with 421 

RapClust had better assembly coverage, but lower genome coverage. This suggests that 422 

transcripts generated from more restrictive options are more likely to be real genes that 423 

can be found in the genome, but the more restrictive options do exclude some genes. 424 

Error correction did not follow this trend, and generally decreased assembly coverage 425 

while not affecting genome coverage.  426 

Read mapping to reference genome 427 

As an alternative to de novo assembly, RNA-Seq analysis for these two species could 428 

utilize a mapping approach with the publicly available genome of diploid VC. With this 429 

approach, an entirely different set of software options become available. In this case, 430 

mapping to a genomic reference that is evolutionarily diverged from the sequenced 431 

species may make accurate read mapping more difficult. To account for sequence 432 

divergence, we compared results from five representative mapping software programs, 433 

run with either default settings or increasing mismatch tolerance (Figure 5A). Overall, 434 

aligners behave similarly on both blueberry species. The programs that yield the most 435 

mapped reads are Stampy and GSNAP, both of which were designed to tolerate more 436 

sequence divergence during mapping, although only Stampy surpassed 5% mismatch 437 

rate (Figure 5B). Bowtie2 and HISAT2 yielded the lowest mapping rates. The addition 438 

of relaxed conditions, despite modifying the percent of mismatches tolerated on 439 

alignments, did not have a significant effect on mapping results of GSNAP, Stampy and 440 

STAR; it lowered the mapping rate for Bowtie2 and increased for HISAT2, especially 441 

in VA. The effect of trimming was correlated with the number of available reads to be 442 

mapped; thus, Skewer improved mapping rates by 5-11% compared to Trimmomatic 443 

(Table S3). Finally, corrected reads, though not significant, promoted an increase in 444 
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mapping rate for all options, with 0.7 and 0.5% average increase in VA and VC, and up 445 

to 2.5% in HISAT2 in VA.  446 

 447 

It is desirable to utilize the maximum number of reads as possible in differential gene 448 

expression analysis, as increased depth of read counts leads to more sensitivity in 449 

statistical analysis. For example, more depth would increasingly allow detection of 450 

differences in lowly expressed genes or genes with small log fold changes in expression 451 

between treatments. To use this as a quality metric, we examined the successful 452 

conversion of raw reads to countable reads for each gene model using the software 453 

HTSeq. Starting from all mapping results, a read may not be converted to a countable 454 

read due to low quality mapping, multiple alignments or mapping to a genomic region 455 

without an annotation. The influence of each factor varies by mapping tool (Figure S2). 456 

The main cause of failed read conversion into counts was low quality of read alignment, 457 

found in Bowtie2, HISAT2, Stampy and GSNAP, by decreasing magnitude. The second 458 

major factor that prevented counting was mapping within an intergenic region, which 459 

accounted for 5-13% of mapped reads (Figures S2 and S3). Mapping to exonic features 460 

showed even larger variability, ranging from 57% displayed by Stampy, to 80% by 461 

HISAT2, varying by mapping tool (Figure S3). In relation with mapping rate, these 462 

values indicate that both programs have similar mapping rates to exons but Stampy is 463 

mapping more reads to non-exonic regions that may present higher sequence 464 

divergence. After collecting useful read counts, count rates to gene models were smaller 465 

than mapping rates by 14.2%, 10.9%, 7.5%, 15.7% and 3.3% for Bowtie2, GSNAP, 466 

HISAT2, Stampy and STAR, representing a loss up to 45% of mapped reads for 467 

Bowtie2 and below 15% for STAR (Figure 5A, right panels). Globally, modification of 468 

mismatch tolerance increased this loss in Bowtie2 and Stampy, and reduced it in 469 

HISAT2. Read loss using Skewer compared to Trimmomatic was larger on GSNAP and 470 

Stampy, and smaller on HISAT2 and Bowtie2.  471 

 472 

Interestingly, the rate of mapped reads not turned into counts in STAR was constant 473 

under the pre-processing and software options tested. After counting, count rates 474 

(Figure 5A, lower values) displayed similar response to read processing as mapping 475 

rates discussed above, with GSNAP and Stampy showing equally high count rates.  476 

 477 
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Figure 5. Read mapping to V. corymbosum reference genome. (A, left panels) 478 

Proportion of total reads mapping to reference (grey boxes or higher values), converted 479 

to counts (white boxes or lower values) and (A, right panels) percentage of the 480 

difference, and (B) mismatch rate depicted by each software option. Five mapping 481 

software programs were compared at default and modified settings to increase mismatch 482 

tolerance. Reads used (cor) or not (Uc) error correction, and Trimmomatic (trimm) or 483 

Skewer trimming software. Results are distribution of 8 samples. 484 

 485 

An important issue in science is reproducibility of results, that in the case of mapping 486 

results can be reflected as similarity of gene count profiles, which ultimately determine 487 

genes that are differentially expressed. Correlation of counts was calculated across all 488 

blueberry samples comparing the 20 combinations of read processing and mapping 489 

software with default options (Figure 6). Concomitant with their similarity on mapping 490 

results to the reference genome, VA and VC shared major correlation patterns between 491 

software programs, where two major groups are formed. This grouping is consistent 492 

with the alogrithmic similarities of the software, i.e. one group is composed by Bowtie2 493 

and HISAT2, which utilize an FM-index, and the second group includes GSNAP, 494 

Stampy and STAR, which use a combination of suffix array / hash table. Correlation 495 

was usually influenced by the trimming option, so that Skewer significantly improved 496 

correlation on GSNAP and STAR, Trimmomatic on Bowtie2 and Stampy, and HISAT2 497 

was ligthly affected by trimming. Interestingly, only Bowtie2 and HISAT2 responded to 498 

read correction, suggesting higher sensitivity to errors by the FM-index.  499 

 500 

Figure 6. Correlation of gene count profiles after mapping to Vaccinium 501 

corymbosum genome. Values are mean of 8 samples in either V. arboreum (VA, upper 502 

triangle) or V. corymbousm (VC, lower triangle). Each row/column corresponds to a 503 

unique combination of mapping software, trimming software and error correction. 504 

 505 

Read mapping to de novo assemblies 506 

The previous section focused on the effects of read correction, trimming and alignment 507 

software on read mapping to a reference genome. Here, a similar analysis is performed 508 

though using de novo assemblies clustered with CD-HIT. To simplify the analysis, 509 
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reads that underwent certain correction and trimming processing (e.g. samples with 510 

corrected reads trimmed with Skewer), were only mapped to the assemblies produced 511 

by reads with the same pre-processing. This method of de novo assembly then 512 

alignment is common for RNA-Seq analysis when no reference genome is available, 513 

and has advantages, including that mapping to transcript assemblies is usually 514 

contiguous, instead of spliced, and that assemblies are species specific, unlike a distant 515 

reference genome. All the aligners previously used for the genome alignment may also 516 

be used with transcriptomes. In addition, we incorporated the Salmon tool for transcript 517 

quantification, which is built solely for alignment of reads to a transcriptome. 518 

 519 

Using de novo assemblies as the reference, mapping performance of the five aligners 520 

showed lower variability by condition (trimming and type of assembly) compared to 521 

mapping to the genome, with Stampy and GSNAP again as best performers (Figure 7). 522 

The mapping profile was similar for both species, with higher mapping rates for VC 523 

than VA by 1.4% using Skewer and 2.5% using Trimmomatic, except for Salmon. Also, 524 

4s assemblies had consistently better mapping rates than 2s, with improvements for 525 

Skewer/Trimmomatic of 3.7/3.0% in VA and 3.8/3.4% in VC. Examining only the 526 

effect of trimming, yield is likewise correlated with the number of reads available for 527 

mapping, so that Skewer had on average 12.5% more reads mapped than Trimmomatic. 528 

Finally, error correction of reads did not have a significant effect on read mapping. 529 

Examining conversion of raw reads to countable reads, 30-45% and 22-30% of mapped 530 

reads in 2s and 4s assemblies were not able to be turned into counts, with higher values 531 

on 2s assemblies than 4s ones (Figure 7, right panels). For Bowtie2 and Stampy, the 532 

major cause of read loss was low quality alignments, while for GSNAP, HISAT2 and 533 

STAR most of the dropped reads were multi-mapped (Figure S4). Read counts further 534 

reduced variability across programs, and intensified the difference between mapping to 535 

4s compared to 2s assemblies, increasing by 9.1/6.1% in VA and 9.8/7.9% in VC for 536 

Skewer/Trimmomatic, respectively. The difference between using Skewer or 537 

Trimmomatic was reduced to an average of 9%. The different results yielded by Salmon 538 

reflects its different algorithm, which performs pseudo-mapping to estimate abundance, 539 

but does not report mapping results in a format suitable to do quality assessment of 540 

alignments. The consequence is that Salmon has an artificially higher estimated count 541 
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rate than reads mapped, and since no reads are filtered out for quality score, Salmon has 542 

higher count rates than other approaches.  543 

 544 

Figure 7. Read mapping to CD-HIT clustered de novo assemblies. Proportion of 545 

total mapped reads (left panels, grey boxes), converted to counts (left panels, white 546 

boxes) and percentage of the difference (right panels). Six mapping software programs 547 

were compared at default settings on assemblies made from four samples, produced 548 

either by two sets of 2 samples independently assembled (2s) and later merged or from 549 

the four samples assembled together (4s). Reads used (cor) or not (Uc) error correction, 550 

and Trimmomatic (trimm) or Skewer trimming software. 551 

 552 

In the case of mapping to a de novo assembly, to calculate a correlation of mapping 553 

results is not directly due to each assembly having their own set of transcripts. Hence, 554 

rather than program-to-program correlation, which is showed on the previous section, 555 

reference-to-assembly count profiles were compared (Figure 8). To do so, the reference 556 

gene model gene space was used for such comparison. New count profiles for assembly 557 

mapping results were obtained from adding counts of all transcripts mapped to each 558 

single reference gene model. Then, they were compared to results with the reference 559 

genome by same read pre-processing and mapping software. Utilization of the reference 560 

genome from diploid VC, though useful for a shared gene set to compare, has the 561 

inconvenience of not representing species-specific transcripts (blue bars in Figure 3). 562 

VA is a sister species but is also a diploid, so one-to-one homology may be expected. 563 

However, tetraploid VC assemblies not only contain a larger proportion of transcripts 564 

that do not match the genome, but also splice isoforms and lowly-diverged homeolog 565 

sequences are expected to map to same gene models. Likewise, balancing this effect, 566 

reads originated from transcripts sharing sequence similarity are expected to map to the 567 

same gene model on the reference genome.  568 

 569 

The highest assembly-to-genome correlation values are obtained on the diploid VA, 570 

which reach 75% on all programs (Figure 8). However, the best performing program 571 

differs by species: GSNAP and Stampy for VA, and Bowtie2 and HISAT2 for VC. For 572 

both species, results with the larger 4s assemblies are better correlated to the genome 573 

than the 2s assemblies. Overall, the preference for trimming software, if any, is opposite 574 
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by species; Skewer and Trimmomatic improves 2s and 4s assemblies on VA, 575 

respectively, and Skewer improves 4s assemblies in VC. These differences caused by 576 

read processing are more prominent on 4s assemblies, while on 2s assemblies they 577 

induce significant changes on VA with Bowtie2, HISAT2 and STAR. This suggests that 578 

stricter trimming in the distant VA may help mapping accuracy on the diploid VC 579 

genome, especially with Bowtie2 and HISAT2 4s, while gentle trimming in the 580 

tetraploid VC may help by either better assembly of transcripts or read mapping. 581 

Salmon results correlate well with the different aligners in VA, especially GSNAP and 582 

Stampy (Figure 8, bar colors), while the tetraploid VC has overall poorly-comparable 583 

results. This suggests that Salmon transcript quantification may be better suited for less 584 

complex genomes. 585 

 586 

 587 

 Figure 8. Correlation of gene count profiles obtained with de novo assemblies and 588 

the reference genome. Counts of transcripts aligned to a same reference gene model 589 

were added and re-annotated as that gene model. Correlation was calculated on the 590 

common set of gene models with non-zero counts on both reference and assemblies, by 591 

mapping software and read pre-processing (error correction and trimming). Uc stands 592 

for uncorrected, cor for corrected, trimm for Trimmomatic. Color indicates mean 593 

correlation of reference counts with Salmon, a transcript-specific quantification tool. 594 

Values are mean ± sd of 8 samples.  595 

 596 

Discussion 597 

 598 

RNA-Seq is an affordable and versatile tool to analyze transcriptomes of any species. 599 

Depending on the available resources, it can be guided by a reference genome or by 600 

building custom assemblies that will reflect the transcripts present in the samples. 601 

However, many confounders make the analysis less straight-forward than simply 602 

trimming adapters, assembling reads as needed and mapping to a reference. Some of 603 

these confounders are common for any RNA-Seq data analysis, such as sequencing 604 

errors, repetitive sequences, natural heterozygosity and variants, while the analysis of a 605 

species other than the reference has additional sequence variation and, in the case of a 606 
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polyploid, gene redundancy. Thus, we explored the repercussions of various informatic 607 

choices on the final gene expression profiles. 608 

 609 

Illumina short read sequencing, though very accurate, is not exempt of sequencing 610 

errors. One strategy to deal with low quality nucleotides aims to correct reads, usually 611 

by replacing poorly represented k-mers with similar ones of higher frequency patterns 612 

[33]. Effectivity of error correction on RNA-Seq data is lower than on genomic data due 613 

to differences in expression level and splicing and is less dependent on the organism of 614 

study [7]. Despite sequencing errors of Illumina technology occurring at a reported 615 

average rate of only 0.1% bases [6], Rcorrector modified 0.7% bases in both species. 616 

While error correction tools can reduce sequencing errors, they can also introduce new 617 

errors at a variable rate, especially for complex datasets [33]. For a complex gene family 618 

or when examining a polyploid, this could be a significant problem with some reads 619 

converted to the sequence of a close homolog, leading to incorrect mapping and/or 620 

misassembly. However, in this study read correction did not reflect significant variation 621 

in overall mapping success. It induced a small amount of variation only on those 622 

aligners that use an FM-index, Bowtie2 and HISAT2, and thus require perfect matching 623 

for seeding an alignment. Read correction was more important for assemblies, which 624 

exhibited larger changes depending on correction state, such as improvement of 625 

completeness when using corrected reads in most cases. Previous research also 626 

demonstrated that error correction impacts genome assembly [33]. 627 

 628 

Trimming is required to, at the least, remove sequencing adapters, and often also 629 

addresses short reads and low quality bases. The broadly-used tool Trimmomatic 630 

implements strict trimming based on sequencing base quality, where trimming removes 631 

low quality bases that could lead to complex or incorrect de Bruijn graphs, but also 632 

reduces read length, which may have a negative impact on coverage bias [33]. Skewer 633 

takes a much less stringent trimming approach. The extent to which trimming of low 634 

quality bases is beneficial for downstream analyses was explored for DNA-Seq [38], 635 

suggesting a positive effect on genome assembly despite increased fragmentation, and a 636 

tradeoff between accuracy and recall of assemblies. In our experiments, similar effects 637 

derived from trimming were shown on both the diploid or tetraploid species. We found 638 

that Trimmomatic (i.e. strict quality trimming) reduced fragmentation of assemblies and 639 
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enhanced biological consistency of clustering, while Skewer (soft trimming) led to more 640 

complete assemblies at the expense of a larger amount of non-coding transcripts. In 641 

mapping experiments, higher quality reads are mapped at a larger relative proportion, 642 

however, this is at the expense of losing many reads at the trimming stage, many of 643 

which may have been successfully mapped downstream. Nonetheless, both options can 644 

lead to comparable expression profiles, mostly if mapping tools can deal with bases of 645 

lower quality [38].  646 

 647 

There are cases where transcriptome assemblies are required, such as absence of a 648 

suitable reference genome, or discovery of novel isoforms. For transcriptome assembly 649 

with samples derived from various conditions, two approaches are common; one in 650 

which the samples are pooled into a single run [36, 37] and one in which samples are 651 

assembled independently [39-41]. The major interest is to obtain transcripts that are 652 

specific to each sample, and combination of reads is a potential source for mis-assembly 653 

or formation of chimeras. In this respect, we found that transcripts from separate 654 

samples had significantly higher assembly base coverage (transcript bases mapped to 655 

the reference genome), although the combined samples had better genome base 656 

coverage (reference genome bases covered by transcripts). However, merging 657 

individual assemblies generates high redundancy. Redundant merged assemblies show 658 

improved read mappability, but less continuity than assemblies from pooled samples, 659 

and their quality decreases after clustering [39]. We found a strong reverse correlation 660 

between fragmentation of genes and assembled reads, supporting that sequencing depth 661 

is beneficial to the recovery of full-length transcripts [13, 16, 42]. General conclusions 662 

apply to both the diploid and the tetraploid species, although the polyploid had 663 

proportional increased duplication rate and exhibited a larger species-specific 664 

proportion of transcripts. On the other hand, proper clustering in polyploids is difficult, 665 

not unexpectedly, as it must handle isoforms of genes as well as homeologs. This is 666 

reflected by the outcomes of the clustering methods utilized, where aggressive reduction 667 

of redundancy also leads to loss of completeness, though to a lesser extent than 668 

sequencing depth.  669 

 670 

Scientists examining organisms without a specific reference face the decision of 671 

whether to use the reference genome of a close organism or to build a custom de novo 672 
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assembly. Mapping to a distant reference has disadvantages, including sequence 673 

divergence at the nucleotide level, and also larger structural divergence, where genes 674 

may be missing or duplicated between the species. From our species studied, it would 675 

be expected for the distant diploid VA to have undergone greater sequence divergence 676 

than the tetraploid relative of the reference diploid VC, in which divergence would be 677 

driven by diversifying subgenomes. Mapping results to the reference genome reflect 678 

this issue, where mapping tools that have greater sensitivity to align divergent 679 

sequences, such as Stampy, GSNAP and STAR, improve mapping results of VA 680 

compared to VC, while HISAT2 and Bowtie2, which require an exact match to seed, 681 

perform better in VC than VA. Regardless of the species, we found GSNAP and 682 

Stampy to yield the highest performances on the reference genome, probably due to 683 

their ability to align divergent sequences even at default settings. On the second 684 

mapping strategy, utilizing specific assemblies allowed much higher mapping rates 685 

compared to the reference, concordant with the high proportion of transcripts not 686 

represented on the genome that are now available to be mapped. Both species displayed 687 

comparable results when mapping to an assembly, slightly better on the tetraploid VC 688 

than on the diploid VA except with Salmon, probably due to the better completeness of 689 

the VC transcriptomes. In addition of higher mapping rates, specific biological 690 

information may be present on transcripts not represented in the genome, from which 691 

64.5% had a predicted cds, gaining insight in the processes under study. Nonetheless, 692 

besides the divergence with the reference genome, using assemblies can give similar 693 

results at 75% correlation; awareness of mismatches also played here a role, improving 694 

correlations of VA with GSNAP and Stampy, and of VC with HISAT2.  695 

 696 

In conclusion, using a reference genome with either a distant diploid species or a 697 

polyploid relative can give reliable results, simplifying the RNA-Seq analysis by 698 

skipping de novo assembly and associated steps. In the present work, we expanded 699 

many possibilities from read processing to gene counting, providing a complete 700 

overview on how each of the tested options impacts gene expression profiles. On both 701 

species studied, the pipeline that yielded high outcome with comparable results using 702 

either a reference genome or a transcriptome assembly used trimming with Skewer, a 703 

combination of multiple samples for improved assembly quality, and Stampy or 704 

GSNAP for short-read mapping. This pipeline was oriented to maximize the recovery of 705 
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information from RNA-Seq reads, working with the specific case where samples and 706 

reference genome are not from the same organism. While we suggest that this strategy 707 

can be extrapolated to other systems, our study also highlights the many downstream 708 

impacts software analysis decisions can have on results. For scientists faced with 709 

complex RNASeq analysis projects, testing of different software packages to examine 710 

and optimize results can be beneficial. 711 

Methods 712 

The following methods include a brief summary of the tools that were used in this work. 713 

For detailed descriptions of the algorithms, original publications or websites are 714 

referred. 715 

Sequencing of RNA-Seq reads of blueberry roots 716 

Preparation of RNA-Seq libraries from root tissue of diploid Vaccinium arboreum 717 

cultivar FL148 and tetraploid V. corymbosum ‘Emerald’ blueberry species are 718 

previously described [20] and available in NCBI as bioproject PRJNA353989. Briefly, 719 

eight plants per species were acclimated to growth in hydroponic systems at either pH 720 

4.5 or pH 6.5 for 8 weeks, after which roots were collected and flash frozen. RNA was 721 

extracted and prepared for sequencing of 100 base-pair (bp) paired-end reads on a 722 

HiSeq 2000 system (Illumina, CA, USA).  723 

Error correction and trimming of RNA-Seq reads 724 

Rcorrector (RNA-Seq error CORRECTOR) [7] is a kmer-based error correction method 725 

that uses a De Bruijn graph to represent trusted k-mers, a method similar to that used on 726 

de novo assembly. Rcorrector v1.0.2 was applied to raw reads with default parameters. 727 

Then, sets of corrected and uncorrected reads were trimmed for removal of Illumina 728 

adapter sequences using either Trimmomatic v0.35 [31], specifying parameters 729 

‘SLIDINGWINDOW:4:15’ and minimum read length of 30 bp, or Skewer v0.2.2 [32], 730 

with same minimum length cutoff. Trimmomatic searches adapters by finding an 731 

approximate match and aligning using a seed and extend approach [43], both for regular 732 

and ‘adapter read-through’ scenarios. Illumina quality scores of bases are used to 733 

determine cut points, discarding the 3’ end of the read. Skewer uses a novel bit-masked 734 
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k-difference matching dynamic programming algorithm, which uses a variation of the 735 

Smith-Waterman [44] algorithm to search substrings and solve the k-difference problem 736 

and an extended bit-vector algorithm [45] to handle base-call quality values. Skewer 737 

can remove low quality bases on both 5’ and 3’ read ends, and is considerably faster 738 

than Trimmomatic. FastQC v0.11.4 [46] was used for quality assessment of reads. From 739 

each original read file (VA control, VA treatment, VC control, VC treatment), the 740 

combination of error correction and trimming generated four new sets of trimmed reads 741 

to be utilized in downstream processes: reads processed by Rcorrector and 742 

Trimmomatic, reads processed by Rcorrector and Skewer, reads processed by 743 

Trimmomatic only and reads processed by Skewer only. 744 

de novo transcriptome assembly and redundancy reduction 745 

Each of the four processed read sets was used for transcriptome de novo assembly, 746 

independently for each blueberry species, using Trinity 2.2.0 [12]. Environmental stress 747 

is expected to alter the transcripts present in the cells as well as transcript splicing 748 

patterns. To include this source of variability, two commonly used approaches were 749 

considered: (i) assemble control and treated samples independently and concatenate 750 

results after assembly, and (ii) combine two control and two treated samples in the same 751 

assembly run. Altogether, 12 Trinity assemblies for each species were generated (Figure 752 

S1). The next step consisted of removing redundant transcripts from assemblies using 753 

either CD-HIT v4.6.6 [14] at 95% identity or RapClust [47]. CD-HIT sorts all 754 

transcripts by length and attempts to consecutively cluster smaller sequences to longer 755 

representative ones, getting classified as redundant or representative based on sequence 756 

similarity; the result included a reduced transcript set consisted of one sequence per 757 

cluster. On the other hand, RapClust was developed to group assemblies using 758 

information from multi-mapper paired-ended reads, thus requiring input from Salmon 759 

[48] aligner. From the clustering information after RapClust, reduced transcriptomes 760 

were obtained after selection of the longest transcript per cluster. This step generated 16 761 

clustered assemblies for each species (Figure S1). 762 
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Quality assessment and functional annotation of assemblies 763 

Trinity assemblies and clustered assemblies were assessed for quality with DETONATE 764 

1.11 [49] to calculate a score weighed with the reads used to generate each assembly, 765 

Transrate 1.0.3 [11] to get basic metrics, and BUSCO v2.0 [17] for completeness 766 

assessment. To compare the de novo assemblies to the genome, reduced assemblies 767 

were mapped to the diploid blueberry reference genome [30] with gmap version 2017-768 

05-08 [50]. Base coverage was calculated on uniquely mapping transcripts using 769 

coverageBed from the BEDTools suite version 2.26 [51]. 770 

 771 

Biological consistency of clustering results was evaluated with a custom Jaccard 772 

similarity score based on the method described in [52] using the BUSCO annotation 773 

results. Each cluster received an individual score calculated as the number of transcripts 774 

with the same BUSCO annotation within the cluster divided by the total number of 775 

transcripts with that BUSCO annotation plus the number of transcripts in the cluster that 776 

did not share that annotation. The statistic is based on amount of the intersection divided 777 

by amount of union where the two sets are (i) all the transcripts sharing a BUSCO 778 

annotation and (ii) all the transcripts in a cluster. If multiple annotations were present in 779 

a cluster, the maximum score was selected for that cluster. The result is a value between 780 

0, indicating low co-annotation of transcripts, and 1, indicating perfect clustering of co-781 

annotated transcripts. Clusters with a single transcript were omitted.  782 

 783 

Putative open reading frames (ORFs) were predicted for each clustered assembly with 784 

TransDecoder v3.0.0 [53], software that incorporates results from blast [54] and Pfam 785 

[55] homology searches to select best ORF candidates. First, candidate cds encoding at 786 

least 50 amino-acid-long peptides were extracted from transcripts. Then, these were 787 

searched with blast against the plant TrEMBL protein database (evalue < 10e-5) and 788 

with HMMER 3.1b2 [56] against Pfam. Finally, a single putative ORF was selected for 789 

each transcript when possible.  790 

Read mapping 791 

The four sets of processed RNA-Seq reads from VA and VC were mapped to either the 792 

draft reference genome for diploid VC or de novo assemblies clustered with CD-HIT, 793 
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using STAR 2.5.0, Stampy v1.0.28, GSNAP 2016-11-07, Bowtie2 2.2.8 and HISAT2 794 

2.0.4. Software options were modified or not when mapping to the reference genome to 795 

increase mismatch tolerance. Salmon v0.7.2 [48], that uses quasi-mapping with a two-796 

phase inference procedure, was specifically used on transcriptomes. Mapping metrics 797 

were collected using picard tools v2.1.0 [57] and RNA-SeQC v1.1.8 [58]. Finally, 798 

counts were obtained using HTSeq-count Version 0.6.1p1 [59]. 799 

 800 

Short read aligners can be classified by algorithmic approach as not splice-aware 801 

(Bowtie2, Stampy) or splice-aware (HISAT2, STAR, GSNAP), or by their use of an 802 

uncompressed index, such as hash table, or compressed indexes, like suffix arrays, 803 

Burrows-Wheeler transform (BWT) methods and Full-text index in Minute space (FM-804 

index). Bowtie2 [60] uses an algorithm based on the BWT and the FM-index, which 805 

extracts seed substrings from reads, finds exact alignments with the FM index and 806 

extends with gapped dynamic algorithms like Needleman-Wunsch (global alignment) or 807 

Smith-Waterman (local alignment). Stampy [61] uses a hash table with locations of 15-808 

mers in the genome used to search every overlapping 15-mer in the reads. Those that 809 

pass neighborhood similarity filtering are extended with Needleman-Wunsch. GSNAP 810 

(Genomic Short-read Nucleotide Alignment Program) [50] combines a set of algorithms 811 

to improve accuracy of alignment, using either hash tables or enhanced suffix arrays 812 

(ESA). Sequentially after failure of previous methods, GSNAP searches for a single 813 

continuous match, applies segment combination procedures, or employs its complete set 814 

analysis to allow for larger mismatch proportion. STAR (Spliced Transcripts Alignment 815 

to a Reference) software [62] is based on an algorithm that uses “sequential maximum 816 

mappable seed search in uncompressed suffix arrays followed by seed clustering and 817 

stitching procedure”. After stitching of seeds, the unmapped portions of the reads can be 818 

extended with Needleman-Wunsch algorithm. HISAT2 (Hierarchical Indexing for 819 

Spliced Alignment of Transcripts) [63] is based on the BWT and the FM-index, with 820 

operation methods adapted from Bowtie2. In addition to the global FM index, the 821 

genome is divided into a large set of small FM indexes. Read strings are first mapped to 822 

the global FM index to find candidate locations and the remaining bases are aligned 823 

with a local index, combining extension by direct comparison of sequences and further 824 

local index search of unaligned fragments. 825 
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 1055 

Supplementary data 1056 

Figure S1 1057 

.jpg 1058 

Diagram representing the de novo assembly strategies, run independently for each 1059 

Vaccinium species. The set of control and treatment reads produced by different 1060 

correction and trimming strategies were used as input. The control read files were 1061 

assembled (A) independently as were the treatment read files (B). From here, each set of 1062 

control sample transcripts was combined with the treatment sample transcripts (i.e. the 1063 

Skewer corrected control transcripts were merged with the Skewer corrected treatment 1064 

transcripts, the Trimmomatic uncorrected control transcripts were merged with the 1065 

Trimmomatic uncorrected treatment transcripts, etc.) (C). These merged transcript sets 1066 

were then clustered with either CD-HIT (D) or RapClust (E). This results in eight 1067 

clustered assemblies. A second assembly strategy merged the control and treatment 1068 

reads prior to assembly (F). These sets of transcripts were also clustered with either CD-1069 

HIT (G) or RapClust (H), also resulting in another set of eight clustered assemblies. 1070 
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Subdivision in categories of reads mapped to the reference genome performed by 1074 

HTSeq. Except in the case of STAR, which does not report not mapped reads, height of 1075 

bars up to red resembles the number of trimmed reads. Options are ordered by 1076 

correction state, mismatch tolerance options and trimming software. 1077 

 1078 

Figure S3 1079 

.tiff 1080 

Mapping results to the reference genome categorized by overlapping gene feature. 1081 

 1082 

Figure S4 1083 

.pdf 1084 

Subdivision in categories of reads mapped to de novo assemblies performed by 1085 

HTSeq. In specific cases with HISAT2 and STAR, multiple aligned reads are counted 1086 

multiple times, overestimating the total number of reads. Options are ordered by 1087 

correction state, trimming software and type of assembly. 1088 

 1089 

Table S1 1090 

.xlsx 1091 

Variation in number and length of reads after pre-processing.  1092 

Number of reads before and after trimming with either Skewer or Trimmomatic and 1093 

using (cor) or not (Uc) error correction. Last column indicate average length of reads 1094 

after trimming the 101-bp raw reads. Values are mean ± sd of 8 samples. 1095 

 1096 

Table S2 1097 

.xslx 1098 

Combination of clustering results of de novo assemblies with transcript lengths. 1099 

Distribution of the number of sequences within each cluster (CLUSSEQS) and length of 1100 

the transcript sequences (LEN). FILTSEQS indicate transcripts filtered out due to low 1101 

read support by RapClust. 1102 
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 1103 

Table S3 1104 

.xslx 1105 

Read mapping rates. Proportion of reads mapped from each combination of error 1106 

correction, trimming software, mismatch tolerance or assembly samples, when 1107 

appropriate, to either the reference genome or de novo assemblies after clustering with 1108 

CD-HIT. 1109 
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